Make your Own Conversion Calculator

Let's try making our own calculator.

We'll be using **Scratch**.

First, a quick refresher on helpful blocks.

Quick Refresh of Scratch Layout

E HZO

Quick Reference – Helpful Blocks Just a few of the possibilities!

Types of Other Blocks

Motion

Make your sprite turn, glide, flip, walk, or go to a specific place.

Make your sprite say text, change size, switch costume, backdrop, or be hidden.

Make your sprite play sounds (be mindful of others in the room).

Events

Always start your script with an Event. This triggers the code to start.

Operators

Change values: Do math with numbers, alter text, or use logic (and, or, not)

Very helpful blocks! Repeat actions, or only play them under certain conditions.

Sensing

Detect key press or mouse click, ask for user input, or respond to other events.

Set or change variables if your code needs them.

My Blocks

Make a custom block.

- \times A "Mole" is 6.02x10²³ of something.
 - **✗** 602,000,000,000,000,000,000,000
 - X Also called "Avogadro's Number"
 - X Useful for counting a *large amount* of *very small* things!

(Eames, 1977)

Why do they call 6.02x10²³ a "Mole" of something?

I don't know. But it's convenient because a mole is also a cute animal.

Find and download a picture of a mole.

In Scratch (Lower Right Corner), click to

Add a Sprite.

Stage

				Up	load Sp	orite	ك
Sprite	Sprite1			↔ x	0) 1 у (
Show	0	ø	Size	100	Dir	ection	•
		Y					Q
Sprit	te1						

Choose "Upload Sprite" and upload your Mole picture. Backdrops

 (\neq)

Q

Our Mole is going to ask us for information.

Choose an event block and drag it in.

Then make your mole ask "How many moles?" and wait for an answer.

Try it in the preview.

What does this do?' Is this useful?

11

3

- Now let's find a way to **remember your answer** so we can *do* something with it.
- We can use **a variable** to do this.
- a Variable is a place-holder for something else... like our answer.

In math, we often use a variable called "x". Let's make a variable and call it "<u>moles</u>".

Now you should see something like this in your preview:

Good job!

Challenge:

Figure out how to *set the variable "moles*" based on how you answer Mr. Mole's question.

Add blocks to your code and try it out... If you succeed, the number next to "moles" will

moles

change.

13

Are these the blocks you used?

No matter what blocks you used, if you found a way to save the answer in the "moles" variable, **you did it**!

- **X** Remember scientific notation:
 - × Every time you multiply by 10, move the decimal over one
 - time. If you run out of digits, you add a zero.
 - 10²³ moves the decimal over 23 times!

602,000,000,000,000,000,000,000

Positive exponents mean the number is getting LARGER.

1.00 x 10⁵ = 100,000.00

Negative exponents mean the number is getting SMALLER

1.00 x 10⁻⁵ = 0.00001

17

- **X** Remember scientific notation:
 - In a calculator, the Sci Notation button will add in x10^{##} and you enter the ## numbers for the exponent.

X When writing in pretty much any code, we can use the letter "E" to represent this too.

Ex: 6.02E23 = 6.02x10²³

Because "E" is easier to write than "x10^{##}"

- X We're going to need to convert any number of
 - moles to particles.
 - X How to do this? Let's use unit analysis:

 $\frac{Motes}{Motes} \times \frac{Particles}{Motes} = Particles$

X Let's say we have 3 moles. We know that for every 1 mole, there are 6.02×10^{23} particles.
3 Moles x $\frac{6 E23 Particles}{1 Moles} = 18 E23 Particles (or 1.8 E24)$

× It's not that hard, but it takes some time to get used

to multiplying scientific notation, right?

- **X** Can you make your calculator do it for you?
- X <u>Challenge</u>: Create a second variable called

"particles". Make it so that when you put in the

moles, it also shows the number of particles.

Hint: 6.02E23 = 6.02x10²³

SPOILER ALERT!

Did you do it for yourself yet? Only click forward if you have...

21

Leave space for FOUR conversions on your calculator.

When you're done,

Give your calculator a title and click

Share

Then post the link to our discussion board. We'll pick up Part 2 tomorrow!

Sources: Images & Media

- ✗ Slides 4-6: Scratch interface images taken directly from <u>https://scratch.mit.edu/</u>
- Slide 7: Eames Office LLC. (1977). Powers of ten [Video].
 Retrieved from <u>https://www.eamesoffice.com</u>
- X Slide 8: Wikimedia Commons

https://en.wikipedia.org/wiki/Mole_(animal)

Other Credits

- ✗ Presentation template by <u>SlidesCarnival</u>
- ✗ Template Photographs by <u>Unsplash</u>

